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Abstract: Is it possible to supply strong empirical evidence 
for or against the efficacy of reasoning software? There is 
a paradox concerning tests of reasoning software. On the 
one hand, acceptance of such software is slow although 
overwhelming arguments speak for the use of such 
software packages. There seems to be room for 
skepticism among decision makers and stakeholders 
concerning its efficacy. On the other hand, teachers-
developers of such software (the present author being one 
of them) think the effects of such software are obvious. In 
this paper, I will show that both positions – skepticism vs. 
belief in efficacy – can be compatible with evidence.  This 

is the case if (1) the testing methods differ, (2) the facilities 
of observation differ and (3) tests rely on contextual 
assumptions. In particular, I will show that developers of 
reasoning software can, in principle, know the efficacy of 
certain design solutions (cf. van Gelder, 2000b, Suthers et 
al., 2003). Other decision makers may, however, be 
unable to establish evidence for efficacy.  
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1 Clarification. 

 
By “empirical evidence”, I refer to observations and measurements, outcome of tests and of 

experiments, where the evidence is elaborated by inductive methods. Such methods include Bayesian 
inductive reasoning. By “reasoning software”, I refer to graphically based, general purpose reasoning 
supporting software to be described below.  

Here, the question is not whether we actually can show such impact. The question is whether 
possible impact would be detectable by empirical methods, provided that such impact was present. 

I will focus on a type of general-purpose reasoning supporting software directed at professionals or 
students in higher education.  There are five or six such software packages. Some of them are purely 
experimental and only two or three have the kind of finish that makes them usable in real courses 
where they have been tried out. Two well known such packages are shown below (van Gelder, 2000a, 
Rolf and Magnusson, 2002): 
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Figure 1:   Two software packages for general purpose reasoning support. Tim van Gelder’s Reason!Able (left) the 
author’s Athena Standard (right). 
 
Such software packages are typically based on a kind of “soft” (i.e. non-axiomatized) theory of 

argumentation, they lay claims to applicability in a wide range of argumentation and they would, in 
principle, be usable in courses in critical thinking. The possible market for such packages is very large.  

 
2 Using Bayesian Testing: Converging from Subjective to Intersubjective Probabilities 

 
Bayesian inductive reasoning satisfies the Kolmogorov axioms of probability, just like the Fisher-

Neyman-Pearson (FNP) methods do. A major difference, however, is in the interpretation of the 
axioms. The FNP-interpretation assigns probabilities only to classes of events. Therefore, the FNP-
methods cannot make sense of probabilities of hypotheses. Bayesians claim to make sense of such 
assignments representing degrees of personal beliefs (Howson and Urbach, 1993).  

The underlying logic of Bayesian testing will focus on the quotient between probabilities of 
hypotheses. The Bayesian interpretation of probability is focused on supplying evidence that will make 
posterior odds converge. The underlying logical relation is illustrated with a formula: 

 
Posterior odds  = The likelihood ratio       *      Prior odds  
P(H1/e1…en)/P(H2/e1…en)  = P(e1…. en/H1)/P(e1…en/H2)  *      P(H1)/P(H2) 
 
Assignment of prior odds is largely a matter of subjective guessing. In order to reach an 

intersubjective conclusion, we need to focus on such evidence that might make the posterior odds 
converge.  

Typically, the assignment of Bayesian probabilities starts with a subjective judgment or guess about 
probability. Different guesses about probabilities can converge towards an interpersonal assignment of 
revised probability on the basis of rather few observations. A table with fictional values will illustrate 
how rapidly convergence occurs: 

 

Quotient initial 
probabilities. 
Odds against 

effect. 

Initial 
probability of 
effect. From 

col 1. 

Quotient posterior 
probabilities 1 

case. Assuming 
LR = 10. 

Posterior 
probability of 
effect 1 case. 
From col 3. 

Quotient posterior 
probabilities of 2 
cases. Assuming 

LR =   (10) ^2. 

Posterior 
probability of 

effect 2 
cases. 

1 0.50 0.10 0.91 0.01 0.99 
2 0.33 0.20 0.83 0.02 0.98 
3 0.25 0.30 0.77 0.03 0.97 
4 0.20 0.40 0.71 0.04 0.96 
5 0.17 0.50 0.67 0.05 0.95 
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6 0.14 0.60 0.63 0.06 0.94 
7 0.13 0.70 0.59 0.07 0.93 
8 0.11 0.80 0.56 0.08 0.93 
9 0.10 0.90 0.53 0.09 0.92 
10 0.09 1.00 0.50 0.1 0.91 

 
Figure 2:    Table showing convergence from initial probabilities to posterior probabilities after two cases. 

 
Above, “LR” stands for the likelihood ratio between the two hypotheses for and against effect. A 

Bayesian inductivist starts with a guess about the odds against an effect – in the table ranging 
between 1 and 10.  If we chose H2 as the negation of H1, we can solve the probability of H1 via the 
formula: 

  X    =  P(H1, given the evidence) 
1-X      P(H2, given the evidence) 

 

This gives us probabilities for effect ranging from 0.09 to 0.50. After one well-chosen test case, the 
Bayesian’s probabilities for effect will vary from 0.50 to 0.91. After two well-chosen tests, her 
probabilities will vary between 0.91 and 0.99. In this way, Bayesians can reach intersubjectively valid 
inductive conclusions on the basis of few, well chosen observations or measurements (Stanford 
Encyclopedia of Philosophy). 

 
3 Using Strongly Discriminating Observations 

 
It is hard to use mainly qualitative evidence to estimate convergence unless the ratio converges 

towards 0 or towards very large numbers. We therefore wish to look for evidence e1…. en that 
strongly discriminates between H1 and H2, that is to say, evidence that takes the likelihood ratio either 
towards 0 or towards very large values. Such evidence would be highly unexpected without the use of 
software and rather expected with the use of the software. 

What might be highly unexpected evidence in a course, using reasoning software? Athena based 
courses and software have been designed to encourage students to improve on four key factors to 
good reasoning: 

 
• Robustness, i.e. that all evidence has been supplied that might change a rationally based 

conclusion. 
• Structure, emphasizing the tree structure of arguments, sorting pros and cons at various levels of 

argument, creating branches in the argument tree. 
• Relevance, in the sense that subordinate arguments should support superior conclusions. 
• Acceptability, in the sense that the arguments supplied should be as likely (if factual) or 

normatively acceptable as possible. 
 

It is very unusual that these features occur in an inquiry even among professional experts. Both the 
course and the use of Athena software imply that these features should be present in student inquiries 
at a level far above what is common among students or young professionals. 

Observational competence will have to be assumed in all inductive testing. In order to supply 
inductive arguments based on the pieces of evidence e1…en, one needs competence to establish 
e1… en.  

The more importance we attach to strongly discriminating evidence, the more we demand of 
observational competence to discriminate the intended unusual and specific effects. Such 
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observational competence can be presumed among qualified teachers of reasoning and designers of 
software who know which features that will discriminate. 

Not all educational decision makers will exercise such observational competence. They may want to 
improve students’ capacities for critical thinking in general, not merely in those respects supported by 
a particular software package. It would be natural for them to design a broad test of critical ability. 
Such tests may not discriminate features related to a specific software package. Reasoning software 
captures only some aspects of critical thinking. The broader tests that are applied, the less chance 
there is of discovering highly discriminating evidence.  

So teacher-designers of software will, in general, possess evidence more suited to draw inferences 
about the efficacy of their own software packages.  

 
4 Context Dependent Testing 

 
In all induction, probabilities are assigned relative to some unspecified background knowledge. It is 

assumed that there is no unknown factor of influence, systematically influencing the outcome. In 
classical statistics, randomization takes care of some such factors that are known to us. Unknown 
factors are supposed to exercise no systematic influence. We assume in our background knowledge 
that there is no systematic influence from sunspots or planetary positions. 

In testing effects of software use, however, important background factors contribute to effects. 
Software in itself has no learning effects whatsoever. All effects arise from the usage of software by 
teachers, classes and individual students.  

Software is no different from textbooks or other educational facilities in this respect. Whatever 
learning effects they have, depend on the way they are used. The effects of educational facilities are 
always blended with effects from tasks, teaching methods, examination, institutional frame factors etc.  

A teacher-designer can modify both software and its uses in order to produce desired effects. In 
developing software and using it in education, one will normally plan and observe such uses and 
modify software or modify teaching on the basis of inferences from such observations. If desired 
effects do not arise, a teacher-designer can either modify the software package, the instructions, the 
tasks or the teaching methods (Rolf, 2003, Rolf, 2004). 

When the teacher-designer uses Bayesian induction, it is presupposed that the context is fixed or 
that the interesting software effects arise from software together with background factors. Such a 
presupposition makes sense if you are acquainted with the context of use.  

Other decision makers are less privileged with respect to background knowledge. Background 
assumptions are not transparent. The background of use if seldom described, classified, codified or 
controlled for in testing.  

 
5 Conclusion 

 
The efficacy of reasoning software is in principle intersubjectively testable on the basis of a few 

observations. If (1) Bayesian induction is used, (2) highly discriminating evidence is established on the 
basis of observational competence and (3) local context of usage can either be presumed constant or 
be explicitly controlled for, then it is possible to know the efficacy of reasoning software on the basis of 
few observations.  

But in practice, observations and contextual background will often be sufficiently transparent only 
for teachers-designers involved in the processes of education and software design. For decision 
makers outside the design-education-test process, a rational acceptance of effects would need large 
scale testing across systematically varied contexts of use. (cf Hitchcock, forthcoming) It is an open 
matter whether it is realistic to demand such tests.  
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