
tripleC 9(2): 494-501, 2011 
ISSN 1726-670X  
http://www.triple-c.at 

CC: Creative Commons License, 2011. 

 
 

Abduction as Incomplete Parameter Estimation 
 

Moto Kamiura 
 

kamiura@rs.noda.tus.ac.jp, moto@goo.jp, Faculty of Science and Technology, Tokyo University of Science, 
Japan  
 
Abstract: Abduction is a kind of logical inference, and has been studied in computer science and artificial intelligence (Fin-
lay and Dix 1996). Recently, Sawa and Gunji (2010) introduced a diagram to represent three types of inference: i.e. deduc-
tion, induction, and abduction, which are articulated by C.S.Peirce. Sawa-Gunji’s representation provides a new approach to 
a numerical aspect of abduction. In the present paper, we show that Sawa-Gunji's representation of abduction is consistent 
with Finlay-Dix's one, and integrate the two representations. Both parameter estimation and abduction occupy a similar 
position on the integrated representation, although they are not completely corresponding. We present "incomplete" pa-
rameter estimation as a sort of "simulated abduction", which is a numerical aspect of abduction. It is applied to a first-order 
autoregressive (AR(1)) model. As a result of numerical analyses on AR(1), the incompletely estimated parameter (IEP) 
follows a Cauchy distribution, which has a power law of the slope -2 in the tail, although conventionally estimated parameter 
is normally distributed. It is shown that the Cauchy distribution of the IEP is based on structure of ratio distribution of normal 
random variables generated from the AR(1). This research suggests that the distribution of the IEP is not based on a mech-
anism of system itself, but on relationship between data structure on the given system (i.e. the given AR(1) process) and 
one on the system observer (i.e. the estimator of the AR(1) parameter). 
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1. Introduction 

C.S. Peirce who is a philosopher/logician classifies reasoning/inference into three types: i.e. deduc-
tion, induction and abduction (Peirce 1868; 1955). Abduction has been studied not only in philoso-
phy but also in artificial intelligence and computer science (Bylander et al 1991; Tanner and Jo-
sephson 1996; Finlay and Dix, 1996; Abe 2003). Recently, Sawa and Gunji presented a model 
representing dynamic change in logical inference (Sawa and Gunji 2010). To define the model 
dynamics, they propose an arrow diagram which is a tool to illustrate each of the three types of 
inference. Sawa-Gunji’s representation of abduction is an operation in which an arrow in the dia-
gram is derived from the other arrows. This formalization for abduction is not only consistent with 
the preceding studies (Peirce 1868; Finlay and Dix 1996), but also provides a new approach to a 
numerical aspect of abduction (Kamiura 2010). 

In the present paper, inheriting the Sawa-Gunji’s representation, we formalize a numerical as-
pect of abduction and find “incomplete” parameter estimation as a sort of “simulated abduction”. 
Auto-regressive (AR(1)) model is used for numerical experiments and the results are shown. In the 
conclusion, we discuss abduction mediating a relationship between system observer and power 
law distributions. 

2. Diagrams of Inference and Positioning of Abduction 

Peirce assumes the three types of inference as the following operations: i.e. (i)Deduction: the major 
premise and minor premise derive the conclusion. (ii)Induction: the minor premise and conclusion 
derive the major premise. (iii)Abduction: the major premise and conclusion derive the minor prem-
ise.  
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Abduction includes an intrinsic incompleteness, which means that abduction is formally equiva-
lent to “the logical fallacy affirming the consequent”. Therefore, the context needs to be clearly de-
scribed to avoid unnecessarily confusing. 

Let us recall a representation of abduction by Finlay and Dix (1996). It has almost the same 
meaning which is given by Peirce (1955). Finlay and Dix use the representation of the first-order 
predicate logic, 

,           (1) 

where a and b are predicates and x is a variable. In standard logic, given a proposition a(x0) with a 
value x0, one can deduce b(x0) (i.e. deduction). In abduction, one deduces the inverse: i.e. if one 
knows b(x0), then one deduces a(x0). This is not permitted in standard logic, but is a formalization of 
abduction. 

Recently, Sawa and Gunji (2010) introduced the following arrow diagram, Figure 1, to represent 
the three types of inference. Each inference is expressed as an operation in which one arrow is 
derived from the other two arrows on this diagram. 
 
 
 
 
 
 
 

Figure 1: Sawa-Gunji’s representation for 
inference. 

Finlay-Dix’s representation and Sawa-Gunji’s one are consistent with each other. Let us express 
arrows of the Sawa-Gunji’s diagram by a := Minor premise, f := Major premise and b: = Conclusion. 
When the arrow diagram is a commutative one and the dot on the lower left corner of the diagram 
is considered as a set of the variable x, we can obtain , which is equal to (1). The 
integration of Finlay-Dix’s representation and Sawa-Gunji’s one is expressed in Figure 2.  

We can also confirm an example of conventional syllogism by the following substitution: a(x) = “x 
is a human”, f = “If x is a human, then x is mortal” (i.e. “humans are mortal”) and b(x) = “x is mortal”. 
 
 
 
 
 
 
 

Figure 2: Integration of the Finlay-Dix’s 
representation and the Sawa-Gunji’s one. 

In addition, we can see that abduction is accounted for by deriving the upper left arrow (i.e. “the 
minor premise” or the map a) on Figure 1 or 2. 

3. Transplanting Inference Structure to Numerical Function System 

3.1. Modifying the Sawa-Gunji’s Representation 

In this section, the diagram for logical inference in Figure 2 is converted into a diagram for numeri-
cal calculations. The following restriction is proposed: i.e. restrict the map a in Figure 2 to a map (α, 

Minor 
premise 

Major 
premise 

Conclusion 

a 
a(x) 

f 

b 
x b(x) 
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-), where α is a parameter and the hyphen – is a blank space for which a value x is substituted. 
This procedure generates a diagram in Figure 3. 
 
 
 
 
 
 
 

 

Figure 3: The diagram to transplant the structure of inference to numerical function system. 

 
Each map in Figure 3 is interpreted as the following: (A1) the map  adds infor-
mation of the premise (i.e. the parameter value α) of system structure f  to the input data x. (A2) the 
system  transforms the input data x into the output data y, under the parameter α. 
(A3) Composition of the maps (α, -) and f derives a set of the pairs of the input and output data, 

.             (2) 

(A1), (A2) and (A3) respectively correspond to the minor premise, major premise and the conclu-
sion.  

3.2. Relationship between Abduction and Parameter Estimation 

In Finlay-Dix’s representation, abduction is an operation to derive the map a. The map 
in Figure 2 is restricted to the map  in Figure 3. The map (α, -) is 

uniquely determined by the parameter α.  Consequently, abduction can be regarded as deriving the 
parameter value α from the two remaining arrows, f and b.  

Based on this procedure, abduction is associated with parameter estimation in a context of con-
ventional science.  

However, abduction includes an intrinsic incompleteness, which means that abduction is for-
mally equivalent to the logical fallacy affirming the consequent. In this point, abduction is different 
from conventional	
  parameter estimation. Therefore the study on a numerical aspect of abduction 
advances to parameter estimation which includes some kind of incompleteness. 

3.3. Abduction as Incomplete Parameter Estimation 

Parameter estimation is based on two conditions: (B1) the model f reflects the data b  enough. (B2) 
the adequate number of the data are used to estimate the parameter α.  
 

 (B1) and (B2) 
Conventional Parame-
ter Estimation 

(B1) and (NB2) 
Small Data Size 

(NB1) and (B2) 
Model-Data (M-D) 
Inconsistency 

(NB1) and (NB2) 
M-D inconsistency 
and Small Data Size 

Table 1: Combination of the conditions on parameter estimation 

(α, x) 
f 

b 
x 

(α, - ) f (α, x) 
= y 

= b (x) 
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Incomplete parameter estimation is defined by estimation which does not meet these conditions. 
That is, in the incomplete parameter estimation, (NB1) the model f does not reflect the data 
b  enough, or (NB2) a small number of data are used to estimate the parameter α. 

The combination of the conditions on parameter estimation is organized as Table 1. 
In this study, we consider only (B1) and (NB2). In the following section, using auto-regressive 

(AR) model, we specify incomplete parameter estimation under the conditions. 

4. Model Description 

4.1. Conventional parameter estimation 

Let us start from least-square method for parameters of AR(p) process. Assume that time series 
 is modeled by AR(p) process, , where  and 

, and  ~ . The parameter is estimated from the first-order 

condition on residual sum of squares (RSS) r2,  
    (3) 

where 
      (4) 

is linear predictor for the AR(p) process. If is a regular matrix, then estimated parameter 
is expressed by 

,               (5) 

where and . 

4.2. Incomplete Parameter Estimation 

In the context of least-square method for AR(p) parameters, the condition (NB2) presented in Sec-
tion 3.3, is specified by the following: (NB2) Data size of RSS, N, is small, i.e. , al-
though conventionally . If , then is a square matrix of . Under 
this condition, we obtain an incompletely estimated parameter, 

,               (6) 

where  in . 

5. Numerical Analysis 

5.1. Distribution of Incompletely Estimated Parameter 

Assume AR(1) time series, . Note that incompletely estimated parameter (IEP) 

 is different from the AR(1) parameter , which is given values. 

From the AR(1), we obtain 

 ,            (7) 

since . Now ~ , therefore  ~ . From Eq. (6), we can obtain the 

IEP   as the following, 
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.    (8) 

 
therefore 

.              (9) 

On the other hand,	
 From Eq. (7), we obtain . Thus,  ~ 

. Generally, given two normal random variables, ~  and ~ , 

we obtain a random variable  which follows a Cauchy distribution, 

 ,         (10) 

where , and is the correlation coefficient between and .  Conse-

quently, we can see that  follows the Cauchy distribution, 

 ,        (11) 

since  and , where  is an autocorrelation on time lag 1.  

5.2. Peak Location of the Distribution and Robustness of the Distribution 

Under the condition , we obtain  

.        (12) 
Figure 4 shows autocorrelations of  on the time lag 1, , for given AR(1) parameter 

, where . Note that  does not depend on the value of . 

This graph shows that the location of the peak of , , is always negative although the 
given AR(1) parameter . 

 

 

Figure 4: The graph of autocorrelations of  on the time lag 1, , for the given AR(1) pa-

rameter . 

 



tripleC 9(2): 494-501, 2011  499 

CC: Creative Commons License, 2011. 

It is known that power law distributions generated by some nonlinear systems are fragile for pa-
rameter change (Kamiura and Gunji 2006). By contrast, the distribution (11), which shows power 
law in the tail, is robust for the parameter change : i.e. If , then we obtain  

and ~ , thus   follows the distribution (11).  

5.3. Computational Experiments 

We can computationally confirm the analyses in the previous sections. Assume an AR(1), 
,    (13) 

where ~  and . 

Figure 5(a) and Figure 5(b) show a distribution of IEP  given by Eq. (9), a normal distribution 
( , ) and a Cauchy distribution given by Eq. (10)  

( , ). Figure 5(b) is double logarithmic graphs. 

 

 

Figure 5(a): The graphs of a distribution of , a normal distribution ( , ) and a 
Cauchy distribution ( , ). 
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Figure 5(b): The double logarithmic graphs of a distribution of , a normal distribution 
( , ) and a Cauchy distribution ( , ). 

 
Figure 6 shows asymptotic property of the distribution of defined by Eq. (5). The distributions of 

get closer to a normal distribution with , as N gets larger. In this process, the power law 
property of the Cauchy distribution in Figure 5 vanishes away. In N = 120, we can see conventional 
parameter estimation, in which  follows a normal distribution with  and 

. 

 

 

Figure 6: The asymptotic property of the distribution of . 

6. Conclusion 

Abduction is a kind of logical inference, and has been studied not only in philosophy (Peirce 1868; 
1955) but also in artificial intelligence and computer science (Bylander et al 1991; Tanner and Jo-
sephson 1996; Finlay and Dix, 1996; Abe 2003). 

In this paper, we integrate Finlay-Dix's representation of abduction (1996) and Sawa-Gunji's one 
(2010). Integrated representation derives a numerical aspect of abduction, which is identified as 
incomplete parameter estimation. We introduce the incompleteness for parameter estimation of 
AR(1) process.  

As a result of the numerical analyses, the IEP follows a Cauchy distribution, which has a power 
law of the slop -2 in the tail, although conventionally estimated parameter is normally distributed. 
The Cauchy distribution is caused by a ratio distribution of normal random variables which is gen-
erated from the AR(1) process.  

As one of the causes of power laws, self-organized criticality (SOC) on physical, chemical and 
mathematical systems (Bak et al. 1987; Claycomb et al. 2004; Luque et al. 2008) has been known. 
These power laws are based on the mechanisms of the systems themselves, which have some 
organized interaction between their elements. On the other hand, power law which is derived from 
the incomplete parameter estimation is not based on a mechanism of system itself but on relation-
ship between data structure on given system (i.e. given AR(1) process) and one on the system 
observer (i.e. estimator of the AR(1) parameter). Consequently, our research suggests that com-
plexity expressed by a power law can be derived from the incomplete parameter estimation which 
is a numerical aspect of abduction and is different from SOC mechanisms. 
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