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Abstract: In this second part of our inquiry into the relation between information and cognition, we delve into the physical 
limits of the manifestation of an arbitrary object first with independence of any observer, then considering the nature of 
perception. The analysis of the manifestations of an object in a homogeneous environment by means of wave phenomena 
shows that the information carried by such manifestations offers a constitutive fuzziness and ambiguity of the observed 
object. On the one hand, the details that can be specified concerning the object are strictly limited by the wave length; on 
the other hand, the volumetric details of the object (i.e. its bowls) are outlawed to the observer, not in virtue of the object 
opacity, but to the very dimension or complexity of the wave phenomenon in the space surrounding the object. The analysis 
of perception, considering this physical boundary and the specificity of the animal sensitivity, shows the combined role of 
other concurrent or previous percept and some a priori knowledge in the perception and awareness of reality. 
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«φύσις κρύπτεσθαι φιλεῖ» («Nature loves to hide») (Heraclitus of Ephesus, DK 123) 

1. The Nature of the Manifestation of Reality and Rerception 

When an observer puts attention into the manifestations of an object, no matter if they are due to 
the mechanical or electromagnetic interactions with the environment (as respectively are sound 
and light), the observing properties of such an environment respond –where the observer is lo-
cated- to the well-known wave equation: 
 

 
 (1)

 
 
where Ψ represents the properties of the environment to which the observed is allegedly sensitive 
(e.g. the air pressure or the light), r is the position vector, t the temporal variable, and v a constant 
depending on the environment characteristics and corresponding to the propagation speed of the 
wave phenomenon. The pertinence of (1) implies that the observation domain (or domain of mani-
festation of the object) is homogeneous and isotropic (i.e., the interactions depend on neither the 
direction nor the position in which the parts are located). 
In Figure 1 is explained, if there is an external illumination by means of a plane wave (i.e. far away 
situated focus) the radiation reaching the observer will be the sum of a plane wave and the wave 
scattered by the object. Spatially, the scattered wave will present the most differences, and these 
will correspond to the superficial qualities of the object, which can be explored by the observation. 
Therefore, the main part of what might be branded as scattering problem can be interpreted as if 
the object were the very source of radiation. 
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Figure 1: Scheme of observation of an object generating a wave phenomenon. 

The relative complexity of (1) may be smoothed if, by means of the Fourier theorem, any temporal 
variation is expressed as a linear combination of harmonic ones. Thus, we can separate a relation 
for each involved frequency, f (and a later combination of single-frequency variations may render 
the full temporal evolution), namely the Helmholtz equation: 
 

  (2) 

 
where the wave number k = 2πf/v = 2π/λ, being λ the wavelength for the involved frequency, and 
the complex values of Ψ reflect the amplitude and phase of the f component of the temporal phe-
nomenon 
 

  

 
If we now apply the Fourier Theorem again in the spatial dimensions, we can find a linear combina-
tion of harmonic variations in each of the spatial directions which allow us to represent any spatial 
distribution of the observed property Ψ. Thus, it can be expressed as a linear combination of distri-
butions of the following type: 
 

   (3) 

 
where u represents any spatial direction, and ku its corresponding spatial frequency or the wave-
number in the direction u.1 Now applying (3) to ec. (2), we obtain: 
 

  (4) 

 

These wave-numbers for each spatial direction might be interpreted in terms of components of 
spatial frequency components (i.e. sinusoidal distributions in the corresponding spatial direction). 

                                                        
1 If ku is limited to real values, it is clear that a valid type of solution for ec. (2) is not considered, corresponding to expo-

nentially decaying distributions, named evanescent modes. Therefore, (3) and the following discussion just refer to har-
monic distributions. However, we should stress that although the absence of evanescent modes is not strictly the case (i.e. 
there are indeed evanescent waves around the object) in a practical sense such waves do not go beyond the very vicinity of 
the object in an observable level. That is, its actual level may be underneath noise level or observer sensibility. 
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Hence, relation (4) implies that the harmonic variations that may be expected in each direction are 
limited to a fundamental constraint, which may be geometrically expressed as a spherical surface 
(Fig.2). The shaded area corresponds to the special frequencies expected in a plane (constant z). 
The spatial frequencies in the x and y direction within the shaded area are named visible (spatial) 
spectrum, the outer points correspond to evanescent waves, which only manifest in the close vicin-
ity of the object. 

 
  

 

Figure 2: Surface of spatial frequencies, isomorphic with the domain of fields generated in the ho-
mogeneous space.  

2. The Limits of Observation 

2.1. Discretizability of the Observable Phenomena 

Assuming the geometric representation of ec. (4), we should admit that the maximal spatial fre-
quency expected in any direction is k (expressed in number of angular waves, rad/m) or k/2π (ex-
pressed in 1/m, which we will name b). That is, the spatial observable distribution is strictly band-
limited. 

 
Theorem 1: The minimal distance between independent intensities values of a field generated by 
an arbitrary object is λ/2. 

 
According to (4) it is clear that the maximal spatial frequency in any direction is k. Thus, according 
to the sampling theorem, the spatial distribution is completely determined by the values distanced 
1/2b = 1/(2k/2π) = π/k (Shannon, 1949, p.11). Hence, any value of the real distribution in-between 
can be obtained by the set of values maintaining such separation. Therefore, these values in-
between can be considered as dependent. In other words, the minimal distance between inde-
pendent values of a field is strictly π /k =  πλ / 2π = λ/2, as we had stated.  

In other words, no matter how much we sharpen our seeing, there is a maximum limit of details 
we might observe independently of where we are located. Nevertheless, if we approach much to 
the object, it might happen that the –observable- presence of evanescent modes increases. To 
take it into account, an special bandwidth excess factor χ>1 will be sufficient. A correct election will 
allow us to make an optimal sampling over a surface embracing the observed object, S (s. fig. 1). 
In this case, the minimal separation between independent values is λ/2χ. 

This discretizability of the observable phenomenon implies that the apparent continuous distribu-
tion problem is indeed reduced to another problem of discrete distribution, whose dimension is 
infinitely smaller, or versus the dimension innumerability of an arbitrary continuous distribution (de-
termined by the values at every point of the continuous), the observation problem dimension is now 
numerable. 
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2.2. Dimensionality of the Observing Problem 

If we now consider that the uniqueness of solution of the Helmholtz equation over all the homoge-
neous space is guaranteed by the knowledge of the field distribution over any surface enclosing the 
observed object (for instance, the bounding surface S), hence, we may speak about a maximum 
number of observable details –from any observation domain D- corresponding to the object. This 
number can be regarded as the dimension of the observation problem (or number of unknowns 
previous to an observation for a given size of the object).2 
 
Theorem 2: The maximum number of details of an object, inscribed in an sphere of radius a, which 
is causing an observed field distribution is 16π(aχ/λ)2. This is the essential dimension of the ob-
servation problem. 
 
Considering –as aforementioned- that the minimum distance between independent samples is 
λ/2χ, and the area of the domain S enclosing the object is 4πa2, thus we can speak about a finite 
number N of independent sub-domains (characterised by only a sample) of area (λ/2χ)2. Such in-
dependence implies that: 1st) according to theorem 1, the field distribution over all S can be deter-
mined by such samples, and 2nd) according to the uniqueness theorem, the field at any other place 
of the homogeneous space of manifestation of the object can also be determined (Colton & Kress, 
1998; Díaz, 2003, §2.2). Consequently, the samples of the field at the N independent sub-domains 
over the minimal ball enclosing the object allows to completely determine the field generated 
around the domain S. Therefore, N corresponds to the dimension of the observation problem 
(namely, essential dimension), where N = (area of S) / (area of an independent sub-domain) = 
4πa2/(λ/2χ)2, as we had stated.  

2.3. Discretizability of a Distant Observation 

As we have previously shown, the minimal distance between independent values of the field distri-
bution is λ/2 –theorem 1–, however, as we have just seen the dimension of the observation prob-
lem is finite; thus, it is to expect that by increasing the distance to the object, the spatial concentra-
tion of observable differences will decrease. 
 
Theorem 3: The minimal distance between independent values of the field corresponding to the 
manifestation of an object inscribed in a sphere of radius a, whose centre is at a distance d, is: 
λd/2aχ. 
 
If the field distribution is described by spherical functions3, it can be observed despite the order of 
the function (concerning its properties with respect to distances further away than the wavelength) 
that all of them present the same radial decay. From this property it can be inferred that at different 
distances away from the object the same angular variations are expected. Thus, if we observe over 
a curve of radius r centred in the origin, the distance between independent angles of observation 
will be: (λ /2χ)/r = λ /2rχ. On the other hand, if we consider that the Helmholtz equation is only satis-
fied in the homogeneous space (therefore out of the observed object, r>a), the distance between 
independent observation angles will be λ /2aχ. Hence, the distance between independent values of 
the field distribution observed at a distance d will be: λd/2aχ, as we had stated. 

                                                        
2 Strictly, the uniqueness depends on the realistic assumption that the radiating field –coming from the object under ob-

servation- tends to cancel with the distance. This and other assumptions –in acoustics, electromagnetic radiation, etc- are 
generally acknowledged as uniqueness theorems (Díaz, 2003, pp. 20, 87, 123; Colton & Kress 1998, §5.1, 7.1). 

3 Observing a field distribution over a spherical surface, the distribution can be expressed as a linear combination of 
spherical functions, which are solutions of the Helmholtz equation (2) expressed in spherical coordinates (Weisstein, 2008). 
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2.4. The Forward and the Inverse Problems 

We might still complete our characterization of the observation problem to refer, for instance, how 
to determine the excess factor χ (it is here enough to notice that for objects whose maximal dimen-
sion is smaller than 2λ, χ can be made approximately 1); how to elect the independent sub-
domains for non planar surfaces; or how to determine the values of the field distribution over any 
other point of the domain of observation, D, of the domain enclosing the object, S, or any other at 
the surrounding homogeneous space.4  All these are fundamental problems for a detailed state-
ment of the forward problem (i.e. finding the manifestations of an object which is well known) and 
for a complete formulation of the inverse problem (i.e. finding the causes, or description of the ob-
ject, originating the observed phenomenon). However they are not essential for discussing the 
limits of the observation, as we intend. 

Suffice it to say that on the basis of the former theorems we can show that independently of the 
volumetric distribution of the sources we are intending to know (observation object) the expression 
of the forward problem can take the form of a linear transformation between the sources and the 
observed field. This transformation, thanks to the discretizability previously shown, can be ex-
pressed by means of the following matrix relation: 

 

  (5) 

 
where (u, v) represent curvilinear coordinates over the observation space; 1… N the cardinals of 
the samples over the observation domain; (x’, y’, z’) the locations of the founts or sources –i.e. the 
object- properly discretized; 1…M the cardinals of these samples; and G(u,v,x’,y’,z’) the Green 
function, which at the same time satisfies the wave equation (2) in the homogeneous space and 
establishes a direct relation to the non-homogeneity, to which the presence of the object (or one of 
its infinitesimal parts) intrinsically responds: between the location (x’,y’,z’) at the sources and (u,v) 
at the observation domain. 

More densely, we can express the relation between field and its corresponding sources grouping 
the field distribution into a M-dimensional vector Ψ, the sources into a N-dimensional vector f , and 
the transformation among them by a matrix operator T : 

 

  (6) 

 
which can be interpreted as the wave function for each discrete source of unitary amplitude. 

The forward problem does not have any difficulty: if we indeed knew the distribution of sources, 
described in terms of f , it would suffice to apply the former relations to know how actually the mani-
festations in terms of Ψ are. We do not care if N is bigger or smaller. However, this is –so to speak- 
a pseudo-problem if we give for granted the way the environment transmits the changes in one part 
of the space (in our case, the validity of the wave equation in our real environment), and of course, 
it does not correspond to the observation problem as we have stated it. Generally, our knowledge 
about the objects is not a priori but a posteriori, that is, reckoning with its manifestation. This is the 
inverse problem, which in our formulation implies obtaining f  from Ψ. In this case, it is evident that 
the dimension N is important, since we would never invert the relation if N>M. It is also important 
the independency of the wave functions ψn, or at least, that the dimensionality (or complexity) of 

                                                        
4 For a discussion of these and further questions concerning the inverse problem cf. the author´s work (Díaz, 2003). 
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the space developed by an arbitrary set of N sources corresponds to the dimensionality (or com-
plexity) of an arbitrary observation. 

2.5. The Inverse Problem 

Theorems 2 and 3 establish fundamental limits which enable a proper arrangement of our problem: 
according to theorem 3, the actual dimension of the observed phenomenon does not depend on 
how detailed the observation is, since we often have to move quite distant to find some independ-
ent value of the considered phenomenon. The number of spatial details that we can perceive can 
never be higher than the essential dimension predicted by theorem 2. Thus, it is also the maximal 
number of details that might be specified concerning the object. It is here relevant to remind that 
such dimension does not depend on the volume (∝a3) but on the bounding surface (∝a3), which let 
us arrive to a fundamental conclusion: the volumetric distribution of the object is inscrutable. In this 
case, what might we know about the object? 

At this point, we should remember the Huygens principle (1690). It establishes that “each point 
on a primary wavefront can be considered to be a new source of a secondary spherical wave and 
that a secondary wavefront can be constructed as the envelope of these secondary spherical 
waves.”5 It suffices to refer to the secondary sources (also considered as “equivalent sources”) 
distributed on the surface bounding the object, which is properly located at the homogeneous 
space. As we have just shown, the dimensionality of the observation and that of the radiated field 
around the object implies that we can only obtain from the object a superficial knowledge, which 
can be interpreted as a projection of what is inside. But it is forbidden to come into that “inside”, just 
based on a posteriori knowledge. 

To clarify this last condition, we must take into account that if the inner complexity of the object 
structure is smaller than the essential dimension N, then the observer could grasp an idea of the 
volumetric distribution. Now, such ‘idea’ would be achieved based on an assumption of inner struc-
ture, since there is in principle an unlimited number of inner structures whose projections over a 
bounding surface are equal. 

If we also take into account the dimensional limitation at the source domain (theorem 2) and the 
separation required for the independence of the equivalent sources at the bounding surface (here 
translated into the independence of the fields generated over the observation domain, D): a good 
way to suit our problem is locating punctual sources over S regularly spaced at a distance λ /2χ. 
The space of radiated fields which could be generated by this discrete distribution of equivalent 
punctual sources over S is equivalent to the one that could be generated by any inner (discrete or 
continuous) volumetric distribution. It can be shown (Díaz, 2003, §3.2.1) that if a quadratic norm is 
defined for the mentioned space of radiated fields as well as a distance between field distributions 
based on this norm d(ψi, ψj), then there will only be a unique distribution of equivalent punctual 
sources over S, which can be considered as an orthogonal projection of the observed field Ψ on 
the source domain f  : 

 

  (7) 

 
where T + represents the adjoint matrix of T . 

                                                        
5 This principle can be justified by means of the aforementioned uniqueness theorem (see §2.2 and note 2), which for 

the electromagnetic problem was rigorously stated by Schelkunoff in terms of the equivalence theorem (Schelkunoff, 1936). 
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2.6. Observational Limits and Perception 

Based upon the previous theorems, the following fundamental conclusions can be forward ex-
tracted, which concern what can be known about the object causing an observed wave phenome-
non: 

 
• The number of details to be found in the environment due to the presence of the object is finite. 
• Such number depends on the surface bounding the object and not on its volume. 
• The volumetric distribution of an object cannot be known only based on its manifestations on the 

environment. 
• The description of the object that can be achieved corresponds to a projection of the inner inho-

mogeneities over a bounding surface. 
 

These four conclusions establish fundamental limits to the observation problem, not attached to the 
specificity of our organs of animal or human sensibility, but to the differences that can merely be 
found in the environment and the maximal knowledge that could be derived concerning the object 
causing these differences. Using Kantian terminology, these are the limits in the determination of 
an object of knowledge by means of a transcendental subject, to which the intimate knowledge of 
the object is forbidden -as we previously showed-. In other words, in spite of the actual complexity 
of the object, the complexity of the manifestations in the space surrounding the object –due to its 
presence- is constitutively smaller than the complexity of the object. We could argue that this were 
the case unless the object could be completely described in its projection over the bounding sur-
face. But even in this case, the observation does not suffice to conclude that this completeness is 
the case, we must also know for instance that the inner part is empty, since there is a whole set of 
possibilities regarding the inner configuration. As previously pointed out, another possibility for a 
complete determination is that the observer intends to find out the specific configuration of a struc-
ture whose degrees of freedom are equal or smaller than the complexity of the field in the sur-
rounding space, which obviously implies an important amount of previous knowledge. 

Our analysis could be considered trivial if we just think in its correspondence to the visual prob-
lem, since there is a danger to confuse the limits to acknowledge the inner part of an object with its 
opacity. Even if some degree of transparency could be ascribed to all the inner parts, the limit con-
cerning the complexity of the field generated by the object leads us to the same conclusion: the 
three dimensionality of the inner distribution cannot be determined by the two-dimensionality of the 
object manifestation, which is also coherent with the holographic principle. According to this, the 
maximal entropy contained in a limited space depends on the bounding surface and not on its vol-
ume (Susskind, 1997; Díaz, 2010).6 

3. The Nature of Perception 

If we now reckon the specificity of the animal sensitivity, we would encounter further limits concern-
ing the amount of differences that a perceiving subject can acknowledge about the object. The 
more complex its sensitive organs are, the closer it can reach the stated limits. For instance, the 
eagle vision is closer to this boundary than what the human vision is (Díaz, 2008). But in the im-
pression of the reality gathered by the subject there is an essential element which is consistent with 
our former conclusions: the differences encountered in sensation points to a radical incomplete-
ness in relation to the reality which is being felt. As we have seen, there is an essential ambiguity 
regarding the possible volumetric configurations of the objects, as there is ambiguity in many illu-
sory images considered in theory of perception (Rock, 1984). Although there is some kind of 
autonomy in perception with respect to the whole act of apprehending reality, this seems to be a 

                                                        
6 As a corollary of the holographic principle, Bekenstein proposes that if the physics of our real (tetra-dimensional) uni-

verse were holographic, there would be an arbitrary set of physical laws which could be applied to some tri-dimensional 
space-time boundary. Therefore, there is a radical indeterminacy between this holographic universe –as he names it- and 
the physics we use to interpret it (Bekenstein, 2003). 
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unitary act in which different sensitive structures take part (synchronic or diachronically) together 
with an intellective moment. 

To illustrate this, let us consider a simple example. In fig. 3, we try to deal with the ambiguity of 
the visual image of an object. It illustrates the dependence of complexity of percepts in perception. 
In (a) the simplest corresponding figure is perceived: a regular hole. However, in (b) because of 
geometrical regularity we may perceive a hole, but shading tends us to perceive an irregular protu-
berance. In fig. 3a, it is normally perceived a big square bump in whose middle there is a regular 
hole. Both the geometrical regularity and the shadowing drive us to perceive the bump with a hole. 
However, fig. 3b brings us about the sensation of a more ambiguous object: the geometrical prop-
erties drive us to see again a hole which is differently colored than the rest. However, the shadow-
ing invites us to see a smaller but irregular protuberance into the bump. According to Dretske’s 
interpretation of perception, if we only assume informational relations holding the deterministic 
condition, we might say that we perceive in fig.3b a bump with a {regular hole or an irregular protu-
berance}. But this is not the case; we can alternatively perceive either an irregular protuberance or 
a regular and colored hole (different intellectual moments are taking part at each time, understood 
as different intellectual apprehensions of the object). 

 

Figure 3: Perception of ambiguous figures. 

Moreover, a different percept can also be obtained from fig.3a: a colored and irregular protuber-
ance. Although this last percept is much lesser probable, it has been experimentally shown that, in 
spite of geometrical and color visual properties, the preferred visual percept might turn to be an 
irregular protuberance if the subject has the tactile sensation that something juts out (Robles-de-la-
Torre & Hayward, 2001; Robles-de-la-Torre, 2006). Furthermore, even when the object is touched 
and the ambiguity –so to speak- is solved, the subject can visually perceive it as a hole, although 
(s)he is aware that a protuberance exists. This property allows us to speak of the aforementioned 
relative autonomy of perception (Rock, 1984), at the time that the awareness and intellection of 
reality forms some kind of unitary act in which different notes of reality, as well as different modes 
and structures of sensing take part. 

As different experiments, carried out in the study of perception, have shown: the preferred per-
ceptions tend to be those corresponding to the simplest configurations. For instance, in the previ-
ous example, a symmetrical bump, a homogeneous colored object, etc. It is as if perception would 
apply an Ockam’s razor: if something admits a simpler description, then this is preferred.7 

The more complex the sensitive structure, the greater the ambiguity of its perception and the 
more accurate the determination of the object. For instance, if we consider the simplest case of a 
cell, it has several means to sense the environment and to adapt to those variations which are 
relevant for its survival. More specifically, the unicellular organism Euglena viridis (among others of 

                                                        
7 To this respect, it is relevant to mention that the mathematical regularization methods to solve inverse problems also 

appeal to this principle (Colton & Krees, 1992). 

a) regular hole or irregular coloured protuberance b) irregular protuberance or regular coloured hole 
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the same genus) has an eyespot apparatus which filters sunlight into the light-detecting, photo-
sensitive structures at the base of its flagellum. This eyespot enables the cell to sense the strength 
and direction of light, and straightforward to move accordingly towards a medium of moderate light 
(away from darkness and bright light).8 The ambiguity of perception is here very low: the strength of 
light is high or low, and it comes from this or that direction. And it is also low the accuracy in the 
determination of the environmental state. In the animal vision, as we have shown before, the ambi-
guity can be much higher as it is the accuracy in the determination of the observed reality. Grasp-
ing more notes of reality, especially if they have different modality (e.g. visual and tactile notes) the 
ambiguity left by some partial perceptions (e.g. a visual percept) can decrease although new kinds 
of ambiguity may appear. Reality is more accurately sensed, feeling at the same time that the non-
felt part of reality is bigger. In our previous analysis of observation, sensation may grow in two di-
mensions, whereas the non-observed part is three-dimensional. 

In other words, the constitutive indeterminacy of the manifestation of reality and the ambiguity of 
sensation (both closed related but not the same) bring about, on the one hand, the feeling that 
there is a part of reality beyond its manifestation; on the other hand, an invitation to find further 
notes to delve into the sensed reality. Probably if sensation were sufficient for a particular being in 
its interaction with its world, this invitation might not be felt. But in this case some kind of determi-
nistic relation should provide univocal perceptions of what is being sensed allowing it to success-
fully deal with the perceived objects. This relation can be interpreted as a fixed assumed solution to 
the ambiguity of sensation.9 However, human sensation is clearly characterized by feeling the ne-
cessity of searching beyond the given sensations. The history of science as a whole could be inter-
preted in this sense, including deep changes in the sensed realities, as when the dawn star is be-
ginning to be perceived as Venus, human as an evolved primate, atoms as something particularly 
empty, etc.  
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