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Abstract: The general theory of information is a synthetic approach, which organizes and encompasses all main directions 
in information theory. It is developed on three levels: conceptual, methodological and theoretical. On the conceptual level, 
the concept of information is purified and information operations are separated and described. On the methodological level, 
it is formulated as system of principles, explaining what information is and how to measure information. On the theoretical 
level, mathematical models of information are constructed and studied. The goal of this paper is to clarify the concept of 
information and discuss its mathematical models, establishing relations with physics as the most developed science. 
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On the one hand, information is the basic phenomenon of our world. We live in the world where 
information is everywhere. All knowledge is possible only because we receive, collect and produce 
information. People discovered existence of information and now talk of information is everywhere 
in our society. As Barwise and Seligman write (1997), in recent years, information became all the 
rage. The reason is that people are immersed in information, they cannot live without information 
and they are information systems themselves. The whole life is based on information processes as 
Loewenstein (1999) convincingly demonstrates. Information has become a key concept in sociol-
ogy, political science, and the economics of the so-called information society. Thus, to better un-
derstand life, society, technology and many other things, we need to know what information is and 
how it behaves. Debons and Horne (1997) write, if information science is to be a science of infor-
mation, then some clear understanding of the object in question requires definition. 

On the other hand, the actual nature of the information and knowledge produced and distributed 
by information technology remains abstract and actually undefined. Even more, many researchers 
assume that this diversity of information uses forms an insurmountable obstacle to creation of a 
unified comprehensible information theory. For instance, Shannon (1993) wrote that it is hardly to 
be expected that a single concept of information would satisfactorily account for the numerous pos-
sible applications of this general field. Gofman (1970) and Gilligan (1994) argued that the term 
information has been used in so many different and sometimes incommensurable ways, forms and 
contexts that it is not even worthwhile to elaborate a single conceptualization achieving general 
agreement. Capuro, Fleissner, and Hofkirchner (1999) even gave an informal proof of the, so-
called, Capuro trilemma that implies impossibility of a comprising concept of information.  

In spite of this some researchers has believed in a possibility to achieve a unified definition of in-
formation by building a unified theory of information (cf., for example, Hofkirchner, 1999; 2009). 
The reality supported this belief and such a unified theory called the general theory of information 
has been created (Burgin, 2010). In it, utilization of a new type of definition, which is called a para-
metric definition, made it possible to adequately and comprehensively define information.  

Parametric systems (parametric curves, parametric equations, parametric functions, etc.) have 
been frequently used in mathematics and its applications for a long time. For instance, a parametric 
curve in a plane is defined by two functions f(t) and g(t), while a parametric curve in space has the 
following form: (f(t), g(t), h(t) ) where parameter t takes values in some interval of real numbers. 
Parameters used in mathematics and science are, as a rule, only numerical and are considered as 
quantities that define certain characteristics of systems. For instance, in probability theory, the 
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normal distribution has the mean µ and the standard deviation σ as parameters. A functional pa-
rameter is utilized for constructing families of non-Diophantine arithmetics (Burgin, 1997).   

In the case of the general theory of information, the parameter is even more general. The para-
metric definition of information utilizes a system parameter. Namely, an infological system plays the 
role of a parameter that discerns different kinds of information, e.g., social, personal, chemical, 
biological, genetic, or cognitive, and combines all existing kinds and types of information in one 
general concept “information”. This parametric approach provides tool for building the general the-
ory of information as a synthetic approach, which organizes and encompasses all main directions 
in information theory (Burgin, 2010).  

If it is suggested that an information theory is a general, or unifying, theory of information, then it 
is necessary to demonstrated that this theory comprises all other directions in information theory, 
as well as covers all uses of the term information. Assessing the general theory of information by 
this condition, we see that in the book (Burgin, 2010), it is demonstrated that the general theory of 
information includes all major directions in information theory with core mathematical models. Ac-
tually, it is possible to this for any existing now direction in information theory. Moreover, the gen-
eral theory of information either encompasses other uses of the term information or puts these 
uses into a correct context by assigning to them other concepts from the general theory of informa-
tion. In such a way, the general theory of information covers all uses of the term information. 

In the first section of the paper, a brief synopsis of the information theory history is given. In the 
second section, problems with correct understanding of the phenomenon information are dis-
cussed. In the third section, meta-axiomatic foundations of the general theory of information are 
presented. In the fourth section, operator mathematical models of information in the context of the 
general theory of information are described. In conclusion, some open problems in information 
theory are given. 

1. A Brief Synopsis of the Information Theory History  

It was natural that the beginning of information theory as a scientific discipline was shaped by 
mundane definitions of information and the anthropomorphic approach of researchers. Their rea-
soning was based on experience of generations who comprehended information as understand-
able messages. Analysis of messages and their exchange in communication brought forth the sta-
tistical approach to information, which materialized in Hartley-Shannon’s theory (Shannon, 1948) 
and to some extent in Fisher’s theory (Fisher, 1925). These theories tell nothing about information 
per se but give very efficient information measures. Due to this efficiency Hartley-Shannon’s infor-
mation theory became domineering in the information research, monopolizing even the name in-
formation theory because many researchers attribute this name exclusively to Hartley-Shannon’s 
information theory. Many books with the title Information Theory contain information only about 
Hartley-Shannon’s information theory (cf., for example, (Ash, 1965; Cover & Thomas, 2006; Gold-
man, 1968) in spite of persuasive demonstration of limitations of this theory by other researchers 
(cf. for example Bar-Hillel & Carnap, 1958; Brukner & Zeilinger, 2001; Marschak, 1954) and elabo-
ration of other approaches in information theory. 

The second component of the anthropomorphic image of information instigated the development 
of semantic information theory (Bar-Hillel & Carnap, 1958), which tryed to overcome limitations of 
the statistical approach to information. The main incentive of this approach is representation of the 
meaning of information by logical means. 

In the process of the society development, the role of information was growing and the under-
standing of this role increased. Researchers started to see information processes and their impact 
in different areas of social life. This brought into being economical information theories (cf. Mar-
schak, 1954) and other pragmatic information theories (cf. Harkevitch, 1960; Bongard, 1970; Hilton, 
1981; Schepanski & Uecker, 1983). 

At the same time, understanding of the second component of the anthropomorphic image of in-
formation instigated the development of algorithmic information theory (Solomonoff, 1964; Kol-
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mogorov, 1965; Chaitin, 1966), as well as studies of information transformations (Mazur, 1984; 
Chechkin, 1991) and information flow (Dretske, 1981; Barwise & Seligman, 1997). 

 All these and many other directions and ideas in information theory made possible creation of 
the general theory of information (Burgin, 2010). 

2. What Holds Back Understanding of Information   

Two main misconceptions in information studies are (Burgin, 2003a; 2003b): (1) comprehending 
the information carrier as information itself (information per se), e.g., in many sources, we can read 
that information is a message or information is a kind of data (Burgin, 2004b) and (2) calling a 
measure of information by the name information, e.g., Shannon information (cf. Brukner & Zeilin-
ger, 2001; Timpson, 2003) or Fisher information (cf. for example Frieden, 1998).  

At first, let us analyze the differences between information, information carrier and information 
representation. To better grasp the situation, consider a letter in an envelope. Receiving an enve-
lope with a letter, you do not think that this is the letter – you understand that the letter is inside the 
envelope. In turn, the letter you receive gives you information because this letter contains a text 
that carries this information. In turn, the text contains a message and the message contains infor-
mation.  

It is easier to understand the differences between the envelope and the letter in it than the differ-
ences between the message and information in it. However, both situations are very similar. 

According to the general theory of information, information I for a system R has to in an object 
that can interact with the system R. Otherwise, the system R will not be able to receive this infor-
mation I. Such an object is called the carrier of information I. For instance knowledge and data are 
carriers of information (Burgin, 2004a). 

However, not every carrier of information I represents this information. For instance, the enve-
lope that contains a letter is only a carrier of information in the letter, while the text of the letter rep-
resents this information. Another example is a box without any indication of what is inside. It is a 
carrier of its content. However, when something is written on the box describing its content or the 
box has a specific size and form, e.g., a shoe box, then the box becomes a representation of its 
content. Although, sometimes it is misleading: imagine a book in a shoe box. In this case, the shoe 
box is only a carrier but not a representation of the book in it. 

At the same time, it is useful to know that for the postal service, a letter is any envelope just sent 
by mail even if this envelope is empty. This shows that the same word may have different meaning 
in different contexts. In a similar way, data may be treated as information from the point of view of 
information storage or a message may be called information in the context of technical communica-
tion devices.  

Now let us analyze the differences between information and its measure, taking the Shannon’s 
measure of information (Shannon, 1948), which is called entropy, is the most popular information 
measure and according to which information in a message m is measured by the formula 

 

                                 H(m) = H(p1, p2, ..., pn) =  - ∑i=1
n pi ⋅ log2pi                     (3.1) 

 
We can see that according to this formula, two very different messages A and B can have the 
same entropy H(A) = H(B). For instance, the message A informs a person P who lives in Paris that 
it was raining in Tokyo last week, while the message B informs the same person P that her son will 
come to her next from New York. If the probability p of both events is the same, then both mes-
sages will contain the same quantity of information 

 
                                                  H(A) =  H(B) = p ⋅ log2p                     (3.2) 

However, information in both letters is essentially different. Thus the measure of information is not 
information.  
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It is interesting to know that information measures have been created without proper under-
standing of what is measured. This is similar to the general situation in science. For instance, it was 
possible to measure volume, mass (weight) and temperature of water before chemists determined 
the molecular structure of water. 

3. Meta-Axiomatic Foundations of the General Theory of Information 

The general theory of information is constructed on three levels: conceptual, methodological (also 
called meta-theoretical) and theoretical. On the conceptual level, the essence of information as a 
dynamic object playing a pivotal role in all walks of reality is explicated, clarifying a quantity of mis-
conceptions, fallacies and illusions. Methodological (meta-theoretical) level is based on two classes 
of principles (ontological and axiological principles) and their relations. On the theoretical level, 
axioms of structures used and axioms reflecting features of information are introduced and utilized 
for building models of information and related phenomena, e.g., information flow or information 
processing.  

To clarify the concept of information, we consider here the basic ontological principles. The first 
of them separates local and global approaches to information definition, i.e., in what context infor-
mation is defined. 

3.1. Ontological Principle O1 (the Locality Principle). 

It is necessary to separate information in general from information (or a portion of information) for a 
system R.  

In other words, empirically, it is possible to speak only about information (or a portion of informa-
tion) for a system.  

3.2. Definition 1 

The system R with respect to which some information is considered is called the receiver, receptor 
or recipient of this information. 

Such a receiver/recipient can be a person, community, class of students, audience in a theater, 
animal, bird, fish, computer, network, database and so on.  

The Locality Principle explicates an important property of information, but says nothing what in-
formation is. The essence of information is described by the second ontological principle, which 
has several forms.  

3.3. Ontological Principle O2 (the General Transformation Principle) 

In a broad sense, information for a system R is a capacity to cause changes in the system R.  
Thus, we may understand information in a broad sense as a capacity (ability or potency) of 

things, both material and abstract, to change other things. Information exists in the form of portions 
of information. Informally, a portion of information is such information that can be separated from 
other information. Information is, as a rule, about something. What information is about is called the 
object of this information. Thus, we can see that all kinds and types of information are encom-
passed by the Ontological Principle O2. In the most concise form, it is demonstrated in (Burgin, 
2010). 

However, the common usage of the word information does not imply such wide generalizations 
as the Ontological Principle O2 implies, and we need a more restricted theoretical meaning be-
cause an adequate theory, whether of information or of anything else, must be in significant accord 
with our common ways of thinking and talking about what the theory is about, else there is the dan-
ger that theory is not about what it purports to be about.   

Information in a proper sense is defined of structural infological systems. In essence, any sub-
system of a system may be considered as its infological system. However, information in a proper 
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sense acts on structural infological systems. An infological system structural is structural if all its 
elements are structures. For example, systems of knowledge are structures. 

To achieve precision in the information definition, we do two conceptual steps. At first, we make 
the concept of information relative to the chosen infological system IF(R) of the system R and then 
we select a specific class of infological systems to specify information in the strict sense. That is 
why it is impossible and, as well as, counterproductive to give an exact and thus, too rigid and re-
stricted definition of an infological system. Indeed, information is a very rich and widespread phe-
nomenon to be reflected by a restricted rigid definition (cf. for example Capurro, Fleissner, & 
Hofkirchner, 1999; Melik-Gaikazyan, 1997). 

3.4. Ontological Principle O2g (the Relativized Transformation Principle) 

Information for a system R relative to the infological system IF(R) is a capacity to cause changes in 
the system IF(R). Elements from IF(R) are called infological elements.  

Even more restricted is the following principle. 

3.5. Ontological Principle O2a (the Special Transformation Principle) 

Information in the strict sense or proper information or, simply, information for a system R, is a ca-
pacity to change structural infological elements from an infological system IF(R) of the system R.   

To better understand how infological system can help to explicate the concept of information in 
the strict sense, we consider cognitive infological systems. 

An infological system IF(R) of the system R is called cognitive if IF(R) contains (stores) elements 
or constituents of cognition, such as knowledge, data, ideas, fantasies, abstractions, beliefs, etc. A 
cognitive infological system of a system R is denoted by CIF(R) and is related to cognitive informa-
tion.  

3.6. Ontological Principle O2c (the Cognitive Transformation Principle) 

Cognitive information for a system R, is a capacity to cause changes in the cognitive infological 
system IFC(R) of the system R.   

So, we come to the situation where the concept of information is considered on three basic lev-
els of generality: 

 
• Information in a broad sense is considered when there are no restrictions on the infological sys-

tem (cf. Ontological Principle O2). 
• Information in the strict sense is considered when the infological system consists of structural 

elements (cf. Ontological Principle O2a). 
• Cognitive information is considered when the infological system consists of cognitive structures, 

such as knowledge, beliefs, ideas, images, etc. (cf. Ontological Principle O2c).  
 

Consequently, we have three levels of information understanding: 
 

• Information in a broad sense for a system R is a capability (potential) to change (transform) this 
system in any way. 

• Information in the strict sense for a system R is a capability (potential) to change (transform) 
structural components of this system, e.g., cognitive information changes knowledge of the sys-
tem, affective information changes the state of the system, while effective information changes 
system orientation (Burgin, 2010).  

• Cognitive information for a system R is a capability (potential) to change (transform) the cogni-
tive subsystem of this system. 
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Let us explicate other properties of information, taking into consideration a portion I of information 
for a system R. 

3.7. Ontological Principle O3 (the Embodiment Principle) 

For any portion of information I, there is always a carrier C of this portion of information for a sys-
tem R. The substance C that is a carrier of the portion of information I is called the physical, or 
material, carrier of I. 

3.8. Ontological Principle O4 (the Representability Principle) 

For any portion of information I, there is always a representation C of this portion of information for 
a system R.  People empirically observed that for information to become available, the carrier must 
interact with a receptor that is capable of detecting information the carrier contained. The empirical 
fact is represented by the following principle.  

3.9. Ontological Principle O5 (the Interaction Principle) 

A transaction/transition/transmission of information goes on only in some interaction of C with R. 
However, being necessary, interaction is not sufficient for information transmission. Thus, we need 
one more principle.  

3.10. Ontological Principle O6 (the Actuality Principle) 

A system R accepts a portion of information I only if the transaction/transition/transmission causes 
corresponding transformations in R. 

For instance, if after reading this paper, your knowledge remains the same, you do not accept 
cognitive information from this text. In a general case, when the recipient's knowledge structure 
was not changed, there is no cognitive information reception.  

3.11. Ontological Principle O7 (the Multiplicity Principle) 

One and the same carrier C can contain different portions of information for one and the same sys-
tem R.  

4. Operator Models of Information 

The mathematical stratum of the general theory of information is build as an operator theory in 
information spaces based on principles of this theory, which are translated into postulates and axi-
oms. Informally, an information space is a space where information functions (acts). In the func-
tional approach, information spaces are constructed as state or phase spaces of infological sys-
tems. It is possible to use different mathematical structures for state/phase representation. Here we 
are mostly interested in the functional approach when state and phase spaces are function spaces. 

According to the Ontological Principle O2, the essence of information in a broad sense is change 
(transformation) in a system R. In a similar way, according to the Ontological Principle O2g, the 
essence of information in the strict sense is the change (transformation) in the infological system 
IF(R) of R. So, building a mathematical model of information, it is necessary to represent the sys-
tem R and/or IF(R) by a mathematical structure and to portray changes in R and/or in its infological 
system IF(R) by transformations in this structure. This brings us to the conclusion that the basic 
structure for the mathematical representation of information is a system space L, in which the sys-
tem R, or its infological system IF(R), is represented. Systems that are (potential) receivers of in-
formation are represented by points in the space L. Note that elements (points) of the space L may 
have a sophisticated structure. For instance, L can be a space of functions, of semantic networks 
or of classifications. 
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4.1. Example 1 

In control engineering and the theory of automata, a state space is a mathematical model that rep-
resents a system as a set of input, output and state variables, which form a function space. State 
space of a system is an example of a system space L. Dynamics of the system in question is rep-
resented by transition rules.  

For systems studied in control engineering, variables are related by differential equations that 
describe evolution of the system. To make this possible and to abstract from the nature of inputs, 
outputs and states, the variables are expressed as vectors, while the differential and algebraic 
equations are written in matrix form. 

For abstract automata, such as finite automata and Turing machines, variables are symbolic 
systems and evolution of the whole system, i.e., abstract automaton, is described by transition 
rules or transition function. 

4.2. Example 2 

The state space, also called the phase space, of a physical system is also an example of a system 
space L. In mathematics and physics, state space is the space in which all possible states of a 
system are represented, with each possible state of the system corresponding to one unique point 
in the state space. For mechanical systems, the state space usually consists of all possible values 
of position and momentum variables. A state is, as a rule, a region of the state space. In thermody-
namics, a phase is a region of space where matter lies in a given physical configuration, like for 
example of a liquid phase, or a solid phase, etc.  

Quantum mechanics, in its most general formulation, is a theory of abstract operators (observ-
ables) acting on an abstract state space (usually, it is a Hilbert space), where the observables rep-
resent physically-observable quantities and the state space represents the possible states of the 
system under study. 

In quantum field theory, the phase space is a Hilbert space H, i.e., an infinite dimensional com-
plete vector space with a scalar product, while physical systems are represented by vectors in H. It 
is assumed that this vector contains all information on the considered physical system (cf. for ex-
ample Bjorken & Drell, 1965). 

4.3. Definition 1 

• A system R is represented in a system space L when states or phases of R are corresponded to 
points of L. 

• The system R is statically represented in the space L when states of R are corresponded to 
points of L. Such a static representation makes L a state space of R. 

• The system R is processually represented in the space L when phases of R are corresponded to 
points of L. Such a processual representation makes L a phase space of R. 
 

We distinguish two kinds of system representations: state and phase representations, assuming 
that different states and phases of systems are distinguishable. A state of a system R is a static 
characterization of this system. A phase of a system R is a process that is taking place in this sys-
tem. It is possible to consider a phase of a system as a dynamic state, i.e., a state in which transi-
tion (change) in the system takes place (is going). For instance, static states of a printer are off and 
on. Printing and Ready are dynamic states, or phases, of a printer. Thus, a phase of a system R is 
a dynamic characterization of this system. 

A state representation is the triad (St(R), rst , L). Here St(R) is the set of all possible states of R, 
rst is a binary relation between St(R) and L, and L is a set with some structure and L is called the 
state representation space, or simply, the state space, of R. 
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A phase representation is the triad (Ph(R), rph , L). Here Ph(R) is the set of all possible phases of 
R, rph is a binary relation between Ph(R) and L, and L is a set with some structure called the phase 
representation space, or simply, the phase space, of R. 

4.4. Example 3 

An important example of a representation space L for a cognitive infological system is the set of all 
propositions in some logical language C. Propositions are functions that take truth values. This 
representation space is used in the information theory of Bar-Hillel and Carnap (1958), as well as in 
the multiplicity of works on cognitive and intelligent agents (cf. for example Halpern & Moses, 
1985). It is also possible to consider a propositional calculus, predicate calculus, propositional vari-
ety or predicate variety (Burgin, 2004b) as a representation space for a cognitive infological sys-
tem.  

4.5. Example 4 

The category of all classifications from the model of Barwise and Seligman (1997) is an example of 
a state space L. This is also a function space as a classification is a function. In addition, such a 
space has the algebraic structure of a category with classifications as its objects and infomor-
phisms as morphisms. Transformations of such categorical spaces are endofunctors. 

It is possible that the system space L is a mathematical structure, e.g., a linear space, or it can 
be a set, universe or system of such structures. For instance, when we take the set of all classifica-
tions in the sense of Barwise and Seligman (1997) or the set of all semantic networks as L, it has 
the structure of an algebraic category. In physics, state spaces have the structure of a linear space.  

4.6. Definition 2 

The set U(R) of all points from L that are corresponded to states (phases) of R are called the state 
(phase) representation domain of R in L. 

The domain U(R) of L usually is treated as the state space of R where different points corre-
spond to different states of R or as the phase space of R where different points correspond to dif-
ferent phases of R. Very often we have U(R) = L. 

Transformations of systems have different forms. A transformation can be a process, phase, 
state transition, multistate transition, i.e., a composition of state transitions, etc. For instance, a 
state transition of a system R is a transition of R from one state to another. 

A state-transition representation is the triad (Trans(R), rsttr , L). Here Trans(R) is the set of all 
state transitions of the system R and rsttr is a binary relation between Trans(R) and the set of pairs 
(a, f(a)) with a ∈ L. Operators on states of R correspond to endomorphisms of L, i.e., mappings of L 
into itself that preserve a chosen structure in L. 

4.7. Definition 3 

• A system R is dynamically represented in the space K if transformations (e.g., transitions of 
states) of R are corresponded to elements of K. 

• A system R is transitionally represented in the space L if transitions of states of R are corre-
sponded to transformations of L. 

 
To build a mathematical model of information, we consider a class K of systems, which are recep-
tors of information, a set IT of infological system types, and a set L of representation spaces for 
infological systems of systems from K. In addition, for each system R from K and infological system 
IF(R) with a type from IT, a representation (St(IF(R)), rst , L) with L ∈ L is fixed.  
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4.8. Definition 4 

• A general information operator I in L is a partial mapping I: ∪L∈L L → ∪L∈L L . 
• A (particular) information operator I in L is a partial mapping I: L → L. 
 
Each information operator represents a. portion of information. Note that a union of several portions 
of information is also a portion of information (Burgin, 2010). Here we typically consider functional 
information operators acting in function spaces. 

We denote the set of all general information operators in L by Op L, the set of all total informa-
tion operators in L by Opt L, the set of all information operators in L by Op L and the set of all total 
information operators in L by Opt L. 

4.9. Example 5 

A proposition p induces an information operator Ap on systems of (logical) worlds used in semantic 
information theories. A logical world consists of all true statements/propositions about all entities 
from this world. If W is a system of logical worlds, then the information operator Ap excludes all 
worlds where p is not true, i.e., all worlds inconsistent with p. 

At the same time, a proposition p induces an information operator Ap on states of a chosen uni-
verse U according to semantic information theories. States of U are consistent assignments of truth 
values to primitive propositions from a propositional language L. The information operator Ap ex-
cludes all states where p is not true, i.e., all states inconsistent with p. 

4.10. Example 6 

A portion of cognitive (epistemic in the sense of Mizzaro, 2001) information I induces an informa-
tion operator AI on systems of knowledge systems. In the theory of epistemic information, it is as-
sumed that a knowledge system K consists of knowledge items. It is possible to take elementary 
knowledge units built in (Burgin, 2004a) or elementary propositions/predicates as such knowledge 
items.  

4.11. Example 7 

Infomorphisms from the theory of information flow (Barwise & Seligman, 1997) are examples of 
information operators. Endofunctors in the category IFlow with classifications as its objects and 
infomorphisms as morphisms are also examples of information operators. 

4.12. Example 8 

Ultramappings and ultraoperators from the operator information theory are examples of information 
operators (Chechkin, 1991). Endofunctors from the category IUMap(X) with the set Data(X) of all 
elementary data on all points from X as the set of its objects and ultramappings as morphisms are 
also examples of information operators. In a similar way, endofunctors from the category IUOp(X) 
with general iunformations as its objects and ultraoperators as morphisms give one more example 
of information operators.  

In this model, information processes are represented by operator algebras and operator dynami-
cal systems. These systems can be continuous or discrete. For instance, information processing in 
contemporary computers is represented by discrete operator dynamical systems. 

Different properties of functional information operators, their transformations and categories are 
studied in (Burgin, 2010). 
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5. Conclusion   

Thus, we have demonstrated what misconceptions hindered elaboration of the unified concept of 
information, clarified this concept, allowing unification of diverse understandings and usages of the 
term information in the context of the general theory of information, and explicated a mathematical 
model of information.  

In this context, it might be useful to suggest several problems for future research. 
 

• Build an axiomatic description of information spaces and study their properties in this context.  
• Define and study algebras of information operators for various information spaces. 
• Develop mathematical theory of information processes. 
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